矿物质
矿物质(英语:Mineral),又称为无机盐、膳食矿物质,是生物体维持正常生理功能和生化代谢等生命活动所必需的化学元素[1][2][3],但通常不包括碳、氢、氮和氧等四大构成生物体的基础元素(约占人体体重的96%)。矿物质约占人体体重的4.4%,可依生物体所需求的量分为常量元素(需求量较大)和微量元素(需求较小)。人体内主要的矿物质包括钙、磷、钾、钠和镁等[2],其他具有特定生化功能的矿物质还有铁、氯、钴、铜、锌、锰、钼、碘、硒等。[4]
矿物质和维生素、必需脂肪酸以及必需氨基酸同为生物体必须的营养素。[5]由于矿物质是元素,不能由生物体以生物化学方式合成[6],因此须从环境中摄取。植物主要从土壤中获取矿物质。[6]人类饮食中的大部分矿物质来自食用动植物及饮用水。[6]大多数矿物质在陆地上相当普遍,钠和碘等也大量存在于海洋中。
适当摄取一定程度的膳食矿物质对维持身体健康是必须的,否则可能导致各种矿物质缺乏症。然而摄取过量亦可能引致许多病症,其中部分归因于身体内不同矿物质的竞争性。例如过量的摄取锌会抑制人体对铜和铁的吸收。[7]
有媒体报导称,物体接触矿物质含量过高的井水后,会在物体表面形成薄膜,经长时间暴晒,薄膜会变成坚硬的外壳,即“石化”。[8]
生物圈
[编辑]并非每种化学元素在生物圈中都能发挥生物作用,只有在大多数生物(尤其是哺乳动物)体内具有生物功能的元素才会被视为膳食矿物质。大多数已受认定的膳食矿物质都是原子量相对较低的元素。
元素周期表中的矿物质[9] | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
H | He | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Li | Be | B | C | N | O | F | Ne | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Na | Mg | Al | Si | P | S | Cl | Ar | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
K | Ca | Sc | Ti | V | Cr | Mn | Fe | Co | Ni | Cu | Zn | Ga | Ge | As | Se | Br | Kr | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Rb | Sr | Y | Zr | Nb | Mo | Tc | Ru | Rh | Pd | Ag | Cd | In | Sn | Sb | Te | I | Xe | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Cs | Ba | * | Lu | Hf | Ta | W | Re | Os | Ir | Pt | Au | Hg | Tl | Pb | Bi | Po | At | Rn | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fr | Ra | ** | Lr | Rf | Db | Sg | Bh | Hs | Mt | Ds | Rg | Cn | Nh | Fl | Mc | Lv | Ts | Og | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
* | La | Ce | Pr | Nd | Pm | Sm | Eu | Gd | Tb | Dy | Ho | Er | Tm | Yb | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
** | Ac | Th | Pa | U | Np | Pu | Am | Cm | Bk | Cf | Es | Fm | Md | No |
图例:
四大生命基础元素
可能在人体中具有不可或缺的潜在生理功能,但尚无决定性证据支持或其确切作用尚不明确的元素
有限的间接证据显示其对哺乳动物身体有微量益处或生理功能的元素
|
功用
[编辑]人体
[编辑]除了CHON外,已知至少有16种化学元素在人体中具有明确生理功能[1][14],是人体必需的膳食矿物质。
常量元素
[编辑]对于人类,维持生理所需的常量元素(每日营养素建议摄取量,RDA > 200 mg/每日)包括:
矿物质 | 生理功能[15][16] | 膳食来源[16] | 缺乏及过量病症 |
---|---|---|---|
钾 | 人体细胞内主要的阳离子,可调节细胞内外的渗透压、水分及酸碱平衡,维持肌肉收缩和神经传导,参与细胞内糖类和蛋白质的代谢等 | 甘薯、番茄、胡萝卜、马铃薯、豆类、谷类、牛奶及乳制品、瘦肉、海鲜、香蕉、柳橙等[17][18] | 低血钾 / 高钾血症 |
氯 | 人体细胞外液主要的阴离子,可调节细胞内外的渗透压、水分及酸碱平衡,形成胃中的盐酸,少数酶的辅因子等 | 食盐、自来水 | 低氯血症 / 高氯血症 |
钠 | 人体细胞外液主要的阳离子[19],可调节细胞内外的渗透压、水分及酸碱平衡[20],维持肌肉收缩和神经传导等 | 食盐、调味料(酱油、味精等)、加工肉类(火腿、香肠、午餐肉等)、海菜、牛奶、菠菜等 | 低血钠症 / 高钠血症 |
钙 | 调节肌肉收缩、神经传导和血液的凝固,构建骨骼及牙齿(羟基磷灰石),维持胶原蛋白之正常功能,参与血细胞的合成等 | 牛奶及乳制品、鸡蛋、沙丁鱼、深绿色蔬菜、坚果、芝麻、豆腐等[21] | 低钙血症 / 高血钙 |
磷 | 构成细胞膜(磷脂质),组成核苷酸(构成核酸、ATP负责化学分子的磷酸化以传递能量等),构建骨骼及牙齿(羟基磷灰石),维持血液的酸碱平衡等 | 红肉、牛奶及乳制品、鱼、家禽、蛋、谷物、豆类等[22][23] | 低磷血症 / 高磷血症 |
镁 | 催化ATP之合成及磷酸化,300多种酶展现活性所必需的辅因子,构建骨骼(磷酸镁、碳酸镁),协助肌肉收缩及神经传导等 | 深绿色蔬菜、肉类、豆类、全谷类、坚果、花生酱、酪梨等[24] | 低血镁症 / 高镁血症 |
硫 | 构成多种氨基酸、辅因子和维生素,形成构建蛋白质的双硫键,硫酸根参与肝脏解毒反应及维持血液酸碱平衡等 | 肉类、家禽、蛋、豆类、坚果、葱、蒜、洋葱、十字花科蔬菜等 | -- |
微量元素
[编辑]最重要的微量元素(RDA < 200 mg/每日)包括:
矿物质 | 生理功能[15][16] | 膳食来源[16] | 缺乏及过量病症 |
---|---|---|---|
铁 | 组成血红素及肌红蛋白(负责氧和二氧化碳之运输),组成多种酶及细胞色素等 | 肉类、海鲜、坚果、豆类、谷类、深绿色蔬菜、黑巧克力等[25] | 铁缺乏症 / 血色沉着病 |
锌 | 200多种酶展现活性所必需的辅因子,调节细胞的分裂、生长及凋亡,维持免疫系统运作正常,促进性器官的成熟及维持其功能运行,促进伤口愈合及骨骼发育等 | 红肉、家禽、海鲜如牡蛎等、牛奶及乳制品、谷物、坚果等[26] | 锌缺乏 / 锌中毒 |
锰 | 超氧化物歧化酶等诸多酵素之成分或辅因子,维持糖类及脂肪之正常代谢,促进骨骼的发育及生长等 | 谷物、豆类、坚果、菠菜等叶菜类、茶叶、咖啡、动物内脏等[27] | 锰缺乏 / 锰中毒 |
铜 | 各种铜蛋白以及细胞色素c氧化酶等酵素之成分或辅因子 | 肝脏等内脏、肉类、牡蛎等海鲜、坚果、豆类、啤酒等[27] | 铜缺乏 / 铜中毒 |
碘 | 合成甲状腺激素之必要成分,可调节人体新陈代谢、促进生长发育 | 海藻(海带及紫菜等)、贝类等海鲜、蛋、乳制品、加碘盐等[28] | 碘缺乏病(甲状腺肿) / 碘中毒(甲状腺功能亢进症[29]) |
钼 | 黄嘌呤氧化酶、醛氧化酶和亚硫酸盐氧化酶等酵素之辅因子[30] | 全谷类、豆类、坚果等[27] | 钼缺乏 / 钼中毒[31] |
硒 | 各种硒蛋白(如谷胱甘肽过氧化物酶、硫氧还蛋白还原酶等酵素)之成分或辅因子 | 海鲜、动物内脏、瘦肉、坚果、谷物、乳制品、蛋等[32] | 硒缺乏 / 硒中毒 |
钴 | 维生素B12的关键成分 | 肉类、肝脏、海鲜如贝类、蟹肉等[33] | 钴缺乏 / 钴中毒 |
铬 | 葡萄糖耐受因子(GTF)的组成部分(可促进胰岛素作用,调节糖类及脂质的代谢),但目前其在体内的作用机制尚不明确,因此铬对人体的重要性尚存疑义[34][35] | 肝脏、酿酒酵母、葡萄汁、胡椒、青花菜、全谷类制品等[36] | 铬缺乏 / 铬中毒 |
其他矿物质
[编辑]除了上述元素被普遍认可为人体必需的膳食矿物质外,很多其他元素也被建议列入人类必须的营养素,但这些元素的确切生理功能或对于人体之必要性大多缺乏决定性证据支持。[4]以下矿物质的认可与否根据不同的标准而有所差异。
元素 | 潜在生理功能 | 过量病症 |
---|---|---|
氟 | 氟不被认为是人体必需的化学元素,因为其在维持人体生命及生长发育过程中并不具有不可或缺的生理作用。尽管提高氟的摄取量能够强化珐琅质、降低龋齿率,维持骨质稳定、提高骨质密度。[16]氟化物对牙齿的主要益处在于其将牙齿表面的羟基磷灰石转化为更耐酸的氟磷灰石,从而对细菌代谢产生的酸性物质具有更强的抵抗力。[37][38] | 氟化物中毒(氟骨症) 缺乏症:氟缺乏(龋齿、骨质疏松症) |
溴 | 为合成IV型胶原蛋白所必需的辅因子,可能对基底膜结构和组织发育有重要作用。[39] | 溴中毒 |
镍 | 对部分植物、细菌、古菌和真菌具有重要生理功能,是多种酶的必要成分,例如脲酶和氢化酶等[40],因此镍是人体肠道菌丛中部分菌种(如某些双歧杆菌)之必要营养素。[41]在人体中,镍可能是参与水解、氧化还原和基因表达的某些金属酶之结构成分或辅因子。缺镍会阻碍山羊、猪和绵羊的生长,并降低大鼠体内的循环甲状腺激素浓度。[42] | 镍中毒 |
硼 | 对植物来说属于必需营养素,能够维持细胞壁结构的完整及稳定性,参与细胞分裂,协助糖类的运输等。[43][44][45]硼在动物体内是否具有确切的生理功能仍尚属未知[46][47],目前有实验发现补充硼可减少人体排尿时的钙流失量,以及提升17β-雌二醇、睾固酮和维生素D在血中之浓度。[48][49] | 无急毒性(硼酸之LD50为每公斤体重2.5克) 长期暴露在高剂量硼中的慢性影响尚未研究透彻 |
锶 | 对海生放射虫等辐骨虫纲非常重要,是其骨骼的主要成分(硫酸锶)。[50]锶在人体中会取代少量的钙[51],适量的锶能促进骨骼对钙的吸收,辅助骨骼生长,且能提高骨骼密度。[52] | 某些类型的佝偻病[52] |
硅 | 硅藻、放射虫和硅质海绵等生物使用二氧化硅建构其细胞壁或骨骼。[53]硅为一些植物(如水稻)之生长所需,能提高细胞壁结构的强度及完整性。在某些植物中,硅还能促进挥发性物质和植物激素的合成,在植物防御机制中起着重要作用。[54][55][56]有些证据表明,硅对人体指甲、头发、皮肤、心血管和骨骼的健康十分重要[57],为合成弹性蛋白和胶原蛋白所需[58],亦可增加骨质密度[59],因此被认为是人体必需的营养素。[60] | -- |
钒 | 是部分海藻以及固氮菌体内某些酶的关键成分[61][62],也是被囊动物体内钒细胞(一种特殊血细胞)的主要成分。[63][64]目前尚未证实钒是人类必需的营养素,有研究发现缺乏钒会导致大鼠生长减慢。[65] | 钒中毒 |
锂 | 根据血浆中的锂浓度、生物活性和流行病学观察,有迹象显示锂是人体必需的营养素,但目前尚无决定性证据。[66][67] | 锂中毒 |
砷 | 被认为是鸟类必需的微量元素,参与其体内甲硫氨酸代谢物的合成。[68]但其在哺乳动物体内是否具有重要生理作用则尚不清楚。[69][70][71]一些研究表明砷为大鼠、仓鼠、山羊等动物所必需。[72] | 砷中毒 |
其他 | 其他被认为可能是人体必需营养素的元素包括铝、锗、铅、铷和锡等。[40][73][74]另外,钨、镉和轻镧系元素(镧、铈、镨、钕等)在某些低等生物中具有特定的生理功能,但这些元素在哺乳动物体内目前尚无已知的生理作用。[75] | 各种金属中毒症状 |
除了上述元素外,人类的日常饮食中也含有其他各种各样的元素,这些元素可能在人体中不发挥作用,但也几乎完全无害(例如金、锆、铌、钽等);也可能会干扰身体系统的正常运行,具有相当的毒性(例如汞、铊、锑、铍等)。
参见
[编辑]参考
[编辑]- Rebecca J. Donatelle. Health, The Basics. 6th ed. San Francisco: Pearson Education, Inc. 2005.
- ^ 1.0 1.1 Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J. Inorg. Biochem. June 2019, 195: 120–29. PMID 30939379. S2CID 92997696. doi:10.1016/j.jinorgbio.2019.03.013.
- ^ 2.0 2.1 Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David. Handbook of Nutrition and Food 3rd. CRC Press. 2013: 199 [3 July 2016]. ISBN 978-1-4665-0572-8.
- ^ Minerals. MedlinePlus, National Library of Medicine, US National Institutes of Health. 22 December 2016 [24 December 2016]. (原始内容存档于2018-09-11).
- ^ 4.0 4.1 Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David. Handbook of Nutrition and Food, Third Edition. CRC Press. 19 April 2016: 211–24 [3 July 2016]. ISBN 978-1-4665-0572-8.
- ^ Vitamin and mineral supplement fact sheets. Office of Dietary Supplements, US National Institutes of Health, Bethesda, MD. 2016 [19 December 2016]. (原始内容存档于2018-09-11).
- ^ 6.0 6.1 6.2 Minerals. Micronutrient Information Center, Linus Pauling Institute, Oregon State University, Corvallis, OR. 2016 [2023-04-13]. (原始内容存档于2021-11-10).
- ^ Fosmire, G. J. Zinc toxicity. American Journal of Clinical Nutrition. 1990, 51 (2): 225–7. PMID 2407097. doi:10.1093/ajcn/51.2.225.
- ^ 英国现神秘水井:物品接触井水将被石化. 中国大陆: 参考消息. 2015-08-27 [2015-08-29]. (原始内容存档于2015-08-29) (中文(中国大陆)).
- ^ Ultratrace minerals. Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al. Baltimore: Williams & Wilkins, c1999., p. 283-303. Issue Date: 1999 URI: [1] (页面存档备份,存于互联网档案馆)
- ^ Micronutrients, Institute of Medicine (US) Panel on. Chromium. National Academies Press (US). 2001: 197–223 [2023-04-13]. (原始内容存档于2021-01-24) (英语).
- ^ Overview of Dietary Reference Intakes for Japanese (2015) (PDF). [2023-04-13]. (原始内容存档 (PDF)于2021-04-23).
- ^ Scientific Opinion on Dietary Reference Values for chromium. European Food Safety Authority. 18 September 2014 [20 March 2018]. (原始内容存档于2021-10-05).
- ^ Daumann, Lena J. Essential and Ubiquitous: The Emergence of Lanthanide Metallobiochemistry. Angewandte Chemie International Edition. 25 April 2019 [15 June 2019]. doi:10.1002/anie.201904090. (原始内容存档于2023-04-18).
- ^ Nelson, David L.; Michael M. Cox. Lehninger Principles of Biochemistry, Third Edition 3 Har/Com. W. H. Freeman. 15 February 2000: 1200. ISBN 1-57259-931-6.
- ^ 15.0 15.1 衞生署學生健康服務 - 礦物質. 香港特别行政区政府卫生署学生健康服务中心. [2023-04-19]. (原始内容存档于2023-06-05) (中文(香港)).
- ^ 16.0 16.1 16.2 16.3 16.4 谢明哲 胡淼琳 叶姝兰 杨素卿 陈俊荣 张筱珮 徐成金 陈明汝 林娉婷 刘珍芳 张文心. 實用營養學. 台湾: 华杏出版股份有限公司. 2019-02-10 [2023-04-19]. ISBN 9789861945149. (原始内容存档于2023-04-24) (中文(台湾)).
- ^ Dietary Guidelines for Americans 2005: Appendix B-1. Food Sources of Potassium. United States Department of Agriculture. 2005 [2023-04-19]. (原始内容存档于2018-10-03).
- ^ WebMD 网医生. 含钾高的食物一览表,富含钾的蔬菜,富含钾的食物和水果. WebMD. 2019-01-16. (原始内容存档于2021-04-17).
- ^ Srilakshmi, B. Nutrition Science 2nd. New Age International. 2006: 318 [2021-07-17]. ISBN 978-81-224-1633-6. OCLC 173807260. (原始内容存档于2016-02-01).
- ^ Campbell, Neil. Biology. Benjamin/Cummings. 1987: 795. ISBN 978-0-8053-1840-1.
- ^ Drewnowski A. The Nutrient Rich Foods Index helps to identify healthy, affordable foods (PDF). Am J Clin Nutr. 2010,. 91(suppl) (4): 1095S–1101S [2023-04-19]. PMID 20181811. doi:10.3945/ajcn.2010.28450D . (原始内容存档 (PDF)于2020-05-27).
- ^ NHS Choices:Vitamins and minerals – Others. [8 November 2011]. (原始内容存档于2021-04-21).
- ^ Corbridge, DE. Phosphorus: An Outline of Its Chemistry, Biochemistry, and Technology 5th. Amsterdam: Elsevier Science Pub Co. 1 February 1995: 1220. ISBN 0-444-89307-5.
- ^ Magnesium—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2020-09-27).
- ^ Iron—Dietary Supplement Fact Sheet. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2021-05-04).
- ^ Zinc—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2020-09-07).
- ^ 27.0 27.1 27.2 Schlenker, Eleanor; Gilbert, Joyce Ann. Williams' Essentials of Nutrition and Diet Therapy. Elsevier Health Sciences. 28 August 2014: 162–3 [15 July 2016]. ISBN 978-0-323-29401-0.
- ^ Iodine—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2023-09-11).
- ^ Jameson, J. Larry; De Groot, Leslie J. Endocrinology: Adult and Pediatric. Elsevier Health Sciences. 25 February 2015: 1510 [14 July 2016]. ISBN 978-0-323-32195-2.
- ^ Sardesai VM. Molybdenum: an essential trace element. Nutr Clin Pract. December 1993, 8 (6): 277–81. PMID 8302261. doi:10.1177/0115426593008006277.
- ^ Momcilović, B. A case report of acute human molybdenum toxicity from a dietary molybdenum supplement—a new member of the "Lucor metallicum" family.. Archives of Industrial Hygiene and Toxicology (De Gruyter). September 1999, 50 (3): 289–97. PMID 10649845.
- ^ Selenium—Fact Sheet for Health Professionals. National Institutes of Health. 2016 [2023-04-19]. (原始内容存档于2020-05-27).
- ^ Vitamin B-12 (µg) (PDF). USDA National Nutrient Database for Standard Reference Release 28. 27 October 2015 [1 December 2022]. (原始内容存档 (PDF)于26 January 2017).
- ^ Kim, Myoung Jin; Anderson, John; Mallory, Caroline. Human Nutrition. Jones & Bartlett Publishers. 1 February 2014: 241 [10 July 2016]. ISBN 978-1-4496-4742-1.
- ^ Gropper, Sareen S.; Smith, Jack L. Advanced Nutrition and Human Metabolism. Cengage Learning. 1 June 2012: 527–8 [10 July 2016]. ISBN 978-1-133-10405-6.
- ^ Chromium. Office of Dietary Supplements, US National Institutes of Health. 2016 [10 July 2016]. (原始内容存档于2021-10-06).
- ^ Kakei M, Sakae T, Yoshikawa M. Aspects Regarding Fluoride Treatment for Reinforcement and Remineralization of Apatite Crystals. Journal of Hard Tissue Biology. 2012, 21 (3): 475–6 [1 June 2017]. doi:10.2485/jhtb.21.257 . (原始内容存档于2021-04-14).
- ^ Loskill P, Zeitz C, Grandthyll S, Thewes N, Müller F, Bischoff M, Herrmann M, Jacobs K. Reduced adhesion of oral bacteria on hydroxyapatite by fluoride treatment. Langmuir. May 2013, 29 (18): 5528–33. PMID 23556545. doi:10.1021/la4008558.
- ^ McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG. Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell. June 2014, 157 (6): 1380–92. PMC 4144415 . PMID 24906154. doi:10.1016/j.cell.2014.05.009.
- ^ 40.0 40.1 Berdanier, Carolyn D.; Dwyer, Johanna T.; Heber, David. Handbook of Nutrition and Food, Third Edition. CRC Press. 19 April 2016: 211–26 [3 July 2016]. ISBN 978-1-4665-0572-8.
- ^ Sigel, Astrid; Sigel, Helmut; Sigel, Roland K. O. Interrelations between Essential Metal Ions and Human Diseases. Springer Science & Business Media. 27 January 2014: 349 [4 July 2016]. ISBN 978-94-007-7500-8.
- ^ Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements. National Academies Press. 29 September 2006: 313–19, 415–22 [21 June 2016]. ISBN 978-0-309-15742-1.
- ^ Mahler, RL. Essential Plant Micronutrients. Boron in Idaho (PDF). University of Idaho. [5 May 2009]. (原始内容 (PDF)存档于1 October 2009).
- ^ Functions of Boron in Plant Nutrition (PDF). U.S. Borax Inc. (原始内容 (PDF)存档于20 March 2009).
- ^ Blevins DG, Lukaszewski KM. Boron in plant structure and function. Annu. Rev. Plant Physiol. Plant Mol. Biol. June 1998, 49: 481–500. PMID 15012243. doi:10.1146/annurev.arplant.49.1.481.
- ^ Boron. PDRhealth. [2008-09-18]. (原始内容存档于11 October 2007).
- ^ Nielsen, Forrest H. Ultratrace elements in nutrition: Current knowledge and speculation. The Journal of Trace Elements in Experimental Medicine. 1998, 11 (2–3): 251–274. doi:10.1002/(SICI)1520-670X(1998)11:2/3<251::AID-JTRA15>3.0.CO;2-Q.
- ^ Nielsen, FH. Boron in human and animal nutrition. Plant and Soil. 1997, 193 (2): 199–208 [2023-04-21]. ISSN 0032-079X. S2CID 12163109. doi:10.1023/A:1004276311956. (原始内容存档于2021-04-19).
- ^ Nielsen FH, Hunt CD, Mullen LM, Hunt JR. Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women. FASEB J. 1987, 1 (5): 394–7. PMID 3678698. S2CID 93497977. doi:10.1096/fasebj.1.5.3678698.
- ^ De Deckker, Patrick. On the celestite-secreting Acantharia and their effect on seawater strontium to calcium ratios. Hydrobiologia. 2004, 517 (1–3): 1. S2CID 42526332. doi:10.1023/B:HYDR.0000027333.02017.50.
- ^ Pors Nielsen, S. The biological role of strontium. Bone. 2004, 35 (3): 583–88. PMID 15336592. doi:10.1016/j.bone.2004.04.026.
- ^ 52.0 52.1 Pors Nielsen, S. The biological role of strontium. Bone. 2004, 35 (3): 583–588 [6 October 2010]. PMID 15336592. doi:10.1016/j.bone.2004.04.026. (原始内容存档于2023-04-25).
- ^ Bidle, Kay D.; Manganelli, Maura; Azam, Farooq. Regulation of Oceanic Silicon and Carbon Preservation by Temperature Control on Bacteria. Science. 2002-12-06, 298 (5600): 1980–1984 [2023-04-21]. Bibcode:2002Sci...298.1980B. ISSN 0036-8075. PMID 12471255. S2CID 216994. doi:10.1126/science.1076076. (原始内容存档于2023-04-04) (英语).
- ^ Kim, Sang Gyu; Kim, Ki Woo; Park, Eun Woo; Choi, Doil. Silicon-Induced Cell Wall Fortification of Rice Leaves: A Possible Cellular Mechanism of Enhanced Host Resistance to Blast. Phytopathology. 2002, 92 (10): 1095–103. PMID 18944220. doi:10.1094/PHYTO.2002.92.10.1095 .
- ^ Epstein, Emanuel. SILICON. Annual Review of Plant Physiology and Plant Molecular Biology. 1999, 50: 641–664. PMID 15012222. doi:10.1146/annurev.arplant.50.1.641.
- ^ Leroy, Nicolas; de Tombeur, Felix; Walgraffe, Yseult; Cornelis, Jean-Thomas; Verheggen, Francois. Silicon and plant natural defenses against insect pests: impact on plant volatile organic compounds and cascade effects on multitrophic interactions. Plants. 23 October 2019, 8 (444): 444. PMC 6918431 . PMID 31652861. doi:10.3390/plants8110444 .
- ^ Martin, Keith R. Chapter 14. Silicon: The Health Benefits of a Metalloid. Astrid Sigel; Helmut Sigel; Roland K.O. Sigel (编). Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences 13. Springer. 2013: 451–473. ISBN 978-94-007-7499-5. PMID 24470100. doi:10.1007/978-94-007-7500-8_14.
- ^ Loeper, J.; Fragny, M. The Physiological Role of the Silicon and its AntiAtheromatous Action. 1978: 281–296. ISBN 978-1-4613-4020-1. doi:10.1007/978-1-4613-4018-8_13.
|journal=
被忽略 (帮助) - ^ Jugdaohsingh, R. Silicon and bone health. The Journal of Nutrition, Health and Aging. Mar–Apr 2007, 11 (2): 99–110. PMC 2658806 . PMID 17435952.
- ^ Nielsen, Forrest H. Ultratrace Elements in Nutrition. Annual Review of Nutrition. 1984, 4: 21–41. PMID 6087860. doi:10.1146/annurev.nu.04.070184.000321.
- ^ Butler, Alison; Carter-Franklin, Jayme N. The role of vanadium bromoperoxidase in the biosynthesis of halogenated marine natural products. Natural Product Reports. 2004, 21 (1): 180–188. PMID 15039842. doi:10.1039/b302337k.
- ^ Robson, R. L.; Eady, R. R.; Richardson, T. H.; Miller, R. W.; Hawkins, M.; Postgate, J. R. The alternative nitrogenase of Azotobacter chroococcum is a vanadium enzyme. Nature. 1986, 322 (6077): 388–390. Bibcode:1986Natur.322..388R. S2CID 4368841. doi:10.1038/322388a0.
- ^ Smith, M. J. Vanadium biochemistry: The unknown role of vanadium-containing cells in ascidians (sea squirts). Experientia. 1989, 45 (5): 452–7. PMID 2656286. S2CID 43534732. doi:10.1007/BF01952027.
- ^ MacAra, Ian G.; McLeod, G. C.; Kustin, Kenneth. Tunichromes and metal ion accumulation in tunicate blood cells. Comparative Biochemistry and Physiology B. 1979, 63 (3): 299–302. doi:10.1016/0305-0491(79)90252-9.
- ^ Schwarz, Klaus; Milne, David B. Growth Effects of Vanadium in the Rat. Science. 22 October 1971, 174 (4007): 426–428. Bibcode:1971Sci...174..426S. PMID 5112000. S2CID 24362265. doi:10.1126/science.174.4007.426.
- ^ Szklarska D, Rzymski P. Is Lithium a Micronutrient? From Biological Activity and Epidemiological Observation to Food Fortification. Biol Trace Elem Res. May 2019, 189 (1): 18–27. PMC 6443601 . PMID 30066063. doi:10.1007/s12011-018-1455-2.
- ^ Enderle J, Klink U, di Giuseppe R, Koch M, Seidel U, Weber K, Birringer M, Ratjen I, Rimbach G, Lieb W. Plasma Lithium Levels in a General Population: A Cross-Sectional Analysis of Metabolic and Dietary Correlates. Nutrients. August 2020, 12 (8): 2489. PMC 7468710 . PMID 32824874. doi:10.3390/nu12082489 .
- ^ Baloš, M. Živkov; Jakšić, S.; Pelić, D. Ljubojević. The role, importance and toxicity of arsenic in poultry nutrition. World's Poultry Science Journal. September 2019, 75 (3): 375–386 [2023-04-21]. ISSN 0043-9339. S2CID 202026506. doi:10.1017/S0043933919000394. (原始内容存档于2023-01-17) (英语).
- ^ Anke M. (1986) "Arsenic", pp. 347–372 in Mertz W. (ed.), Trace elements in human and Animal Nutrition, 5th ed. Orlando, FL: Academic Press
- ^ Uthus E.O. Evidency for arsenical essentiality. Environ Geochem Health. 1992, 14 (2): 55–58. PMID 24197927. S2CID 22882255. doi:10.1007/BF01783629.
- ^ Uthus E.O. (1994) "Arsenic essentiality and factors affecting its importance", pp. 199–208 in Chappell W.R, Abernathy C.O, Cothern C.R. (eds.) Arsenic Exposure and Health. Northwood, UK: Science and Technology Letters.
- ^ Anke M. Arsenic. In: Mertz W. ed., Trace elements in human and Animal Nutrition, 5th ed. Orlando, FL: Academic Press, 1986, 347–372; Uthus E.O., Evidency for arsenical essentiality, Environ. Geochem. Health, 1992, 14:54–56; Uthus E.O., Arsenic essentiality and factors affecting its importance. In: Chappell W.R, Abernathy C.O, Cothern C.R. eds., Arsenic Exposure and Health. Northwood, UK: Science and Technology Letters, 1994, 199–208.
- ^ Gottschlich, Michele M. The Science and Practice of Nutrition Support: A Case-based Core Curriculum. Kendall Hunt. 2001: 98 [9 July 2016]. ISBN 978-0-7872-7680-5.
- ^ Insel, Paul M.; Turner, R. Elaine; Ross, Don. Nutrition. Jones & Bartlett Learning. 2004: 499 [10 July 2016]. ISBN 978-0-7637-0765-1.
- ^ Ultratrace minerals. Authors: Nielsen, Forrest H. USDA, ARS Source: Modern nutrition in health and disease / editors, Maurice E. Shils ... et al.. Baltimore : Williams & Wilkins, c1999., p. 283-303. Issue Date: 1999 URI: [2] (页面存档备份,存于互联网档案馆)