跳转到内容

隕石學

维基百科,自由的百科全书

隕石學是一門涉及隕石和其它地球外物質,能讓我們更進一步了解太陽系的歷史和其起源的科學[1][2]。專門研究隕石的人稱為隕石學家[3]

研究的歷史

[编辑]

萊格爾隕石的研究報告出來之前,人們相信隕石是一種異端邪說,那些聲稱看到隕石從天而降的人是在說謊。

在1960年,約翰·雷諾發現一些隕石有過量的129,是存在於太陽星雲中的129衰變的結果[4]

研究的方法

[编辑]

礦物學

[编辑]

有些礦物的存在與否,是經過某些物理或化學過程的指標。母體受到的撞擊會記錄在撞擊角礫岩和高壓礦物的相位(例如柯石英akimotoite鎂鐵榴石尖晶橄欖石重矽石β橄欖石[5][6][7]。水合礦物(例如黏土礦物)是母體有液體活動的指標[8]

放射性定年法

[编辑]

輻射的方法可以定出隕石歷史階段的不同日期。來自太陽星雲濃縮體會紀錄下富含鈣鋁隕石球粒。這些可以利用太陽星雲的放射性元素定年(例如26鋁/26 53錳/53鈾/鉛129碘/129)。在這些凝聚物達到微星的尺度之後,就會發生融化和分異。這些過程可以利用鈾/鉛87銣/87[9]147釤/143176鑥/176[10]。金屬核心的形成和冷凝可以用187錸/187鋨法追溯應用在鐵隕石[11][12]。大型撞擊事件,或甚至導致母體銷毀可以利用39氬 /40氬法244鈽分裂痕跡法[13]。在與母體分離後,流星體都暴露在宇宙輻射中。這段時期的長短可以使用3氚/322鈉/2181氪 /83[14][15]。在撞擊到地球之後 (或任何其他足以遮蔽掉宇宙射線的行星),肇因於宇宙射線的核衰變可以用來定出墜落的時間。暴露在地球上的時間是用361481[16]

相關條目

[编辑]

參考資料

[编辑]
  1. ^ meteoritics, n.. OED Online. Oxford University Press. 19 December 2012 [2014-11-30]. (原始内容存档于2020-04-14). 
  2. ^ A rarely used synonym is Astrolithology: Leonard, Frederick C. Introducing meteoritics: The Journal of the Meteoritical Society and the Institute of Meteoritics of the University of New Mexico. Meteoritics. 1953, 1 (1): 1–4. doi:10.1111/j.1945-5100.1953.tb01299.x. 
  3. ^ meteoriticist, n.. OED Online. Oxford University Press. 19 December 2012 [2014-11-30]. (原始内容存档于2020-04-14). 
  4. ^ Reynolds, J. Isotopic Composition of Primordial Xenon. Physical Review Letters. 31 March 1960, 4 (7): 351–354. Bibcode:1960PhRvL...4..351R. doi:10.1103/PhysRevLett.4.351. 
  5. ^ Coleman, Leslie C. Ringwoodite and majorite in the Catherwood meteorite. Candadian Mineralogist. 1977, 15: 97–101 [19 December 2012]. (原始内容存档于2016-05-06). 
  6. ^ Ohtani, E.; Ozawa, S.; Miyahara, M.; Ito, Y.; Mikouchi, T.; Kimura, M.; Arai, T.; Sato, K.; Hiraga, K. Coesite and stishovite in a shocked lunar meteorite, Asuka-881757, and impact events in lunar surface. Proceedings of the National Academy of Sciences. 27 December 2010, 108 (2): 463–466. Bibcode:2011PNAS..108..463O. doi:10.1073/pnas.1009338108. 
  7. ^ Ferroir, Tristan; Beck, Pierre; Van de Moortèle, Bertrand; Bohn, Marcel; Reynard, Bruno; Simionovici, Alexandre; El Goresy, Ahmed; Gillet, Philippe; Van De Moortèle, Bertrand; Bohn, Marcel; Reynard, Bruno; Simionovici, Alexandre; El Goresy, Ahmed; Gillet, Philippe. Akimotoite in the Tenham meteorite: Crystal chemistry and high-pressure transformation mechanisms. Earth and Planetary Science Letters. 1 October 2008, 275 (1–2): 26–31. Bibcode:2008E&PSL.275...26F. doi:10.1016/j.epsl.2008.07.048. 
  8. ^ Hutchison, R.; Alexander, C.M.O.; barber, D.J. The Semarkona meteorite: First recorded occurrence of smectite in an ordinary chondrite, and its implications. Geochimica et Cosmochimica Acta. 30 June 1987, 51 (7): 1875–1882. Bibcode:1987GeCoA..51.1875H. doi:10.1016/0016-7037(87)90178-5. 
  9. ^ Birck, J.L.; Allègre, C.J. Chronology and chemical history of the parent body of basaltic achondrites studied by the 87Rb-87Sr method. Earth and Planetary Science Letters. 28 February 1978, 39 (1): 37–51. Bibcode:1978E&PSL..39...37B. doi:10.1016/0012-821X(78)90139-5. 
  10. ^ Bouvier, Audrey; Vervoort, Jeffrey D.; Patchett, P. Jonathan. The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. Earth and Planetary Science Letters. 31 July 2008, 273 (1–2): 48–57. Bibcode:2008E&PSL.273...48B. doi:10.1016/j.epsl.2008.06.010. 
  11. ^ Smoliar, M. I.; Walker, R. J.; Morgan, J. W. Re-Os Ages of Group IIA, IIIA, IVA, and IVB Iron Meteorites. Science. 23 February 1996, 271 (5252): 1099–1102. Bibcode:1996Sci...271.1099S. doi:10.1126/science.271.5252.1099. 
  12. ^ Re-Os ages of group IIA, IIIA, IVA, and IVB iron from meteorites.. [19 December 2012]. (原始内容存档于2016-04-13). 
  13. ^ Bogard, D.D; Garrison, D.H; Jordan, auJ.L; Mittlefehldt, D. 39Ar-40Ar dating of mesosiderites: Evidence for major parent body disruption < 4 Ga ago. Geochimica et Cosmochimica Acta. 31 August 1990, 54 (9): 2549–2564. Bibcode:1990GeCoA..54.2549B. doi:10.1016/0016-7037(90)90241-C. 
  14. ^ Eugster, O. Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages. Geochimica et Cosmochimica Acta. 31 May 1988, 52 (6): 1649–1662. Bibcode:1988GeCoA..52.1649E. doi:10.1016/0016-7037(88)90233-5. 
  15. ^ Nishiizumi, K.; Regnier, S.; Marti, K. Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past. Earth and Planetary Science Letters. 1 October 1980, 50 (1): 156–170. Bibcode:1980E&PSL..50..156N. doi:10.1016/0012-821X(80)90126-0. 
  16. ^ Nishiizumi, K.; Elmore, D.; Kubik, P.W. Update on terrestrial ages of Antarctic meteorites. Earth and Planetary Science Letters. 30 June 1989, 93 (3–4): 299–313. Bibcode:1989E&PSL..93..299N. doi:10.1016/0012-821X(89)90029-0. 

進階讀物

[编辑]
  • A. J. Bowden; R. J. Howarth; Editors G. J. H. McCall. The history of meteoritics and key meteorite collections : fireballs, falls and finds. London: Geological Society. 2006. ISBN 978-1862391949 (英语).