稀土矿物
稀土矿物(英语:Rare earth mineral)是指主要成分包含一种或是多种稀土元素的矿物。稀土矿物通常发现于碱性至过碱性火成岩组合中、与碱性岩浆伴生的伟晶岩中,或是存在/伴生于碳酸盐深成岩中。[1]具有钙钛矿结构的矿物是稀土元素碱性错合物的常见宿主。[2]来自地幔的碳酸盐熔体也是稀土的载体。[3]与碱性岩浆作用相关的热液矿床含有多种稀土矿物。[1]
而稀土元素是一组共17种,银白色、质软、具有光泽,但彼此性质相似难以区别的金属元素。[4][5] 虽然名为稀土元素,但实际上这些元素在地壳中的数量相对丰富,其中丰度最高的铈是地壳中排名第25常见的元素(参见地壳元素丰富度列表),占68百万分率,含量超过铜。然而,由于稀土元素的地球化学特性,它们在地壳中分布通常十分分散,而罕有富集到高浓度的稀土矿物存在,因此世界上少有具开采价值的矿场,故得“稀土”之名。[6]
中国的储藏量占全世界的36.7%,[7]但中国的产量曾占全世界的95%以上,[8]在2017年占全世界的81%。到2021年中国的产量占全世界的60.63%,而同年美国的产量排名第2,占比为15.52%。[9]
中国的白云鄂博矿区是世界已知最大的稀土矿物蕴藏区。[10]在2005年,这个矿区的稀土元素产量曾高达全世界的45%。[11][12][13]
常见稀土矿物
[编辑]以下所列的是比较常见的热液稀土矿物,以及经常含有显著稀土元素替代物的矿物:[14]
开采作业对环境的可能影响
[编辑]在自然环境中的稀土元素浓度非常低。蕴藏这类资源的矿山通常位于环境和社会标准非常低的国家,因为矿山的开发,而导致有侵犯人权、森林砍伐的事情,并且污染到当地的土地和水源。[15][16]
在采矿和工业生产场所附近,稀土元素的浓度会上升到正常背景水准的许多倍。稀土元素一旦进入环境,就会渗入土壤中,然后它们的迁移取决于多种因素,例如侵蚀作用、风化作用、pH值、降水和地下水等。如同金属一样,它们可根据土壤条件形成,无论是移动,或是被吸附到土壤颗粒中。根据它们的生物利用度,稀土元素可被植物吸收,然后被人类和牲畜摄入。对于稀土元素的开采,使用( 肥料添加剂)和磷肥的生产,都会导致稀土元素污染 。[17]此外,在萃取稀土元素的过程中会用到强酸,而这些酸会渗入环境,并通过水体而导致水生环境酸化。
对于稀土元素的开采、提炼和回收,如果管理不当,会对环境造成严重后果。稀土元素尾矿中的钍和铀因有低放射性,而存有潜在危害,[18]这些物质如果处理不当,会对环境造成广泛的伤害。
参见
[编辑]参考文献
[编辑]- Jones, Adrian P., Francis Wall and C. Terry Williams, eds. (1996) Rare Earth Minerals: Chemistry, Origin and Ore Deposits, The Mineralogy Society Series #7, 372 pp. ISBN 978-0-412-61030-1
- ^ 1.0 1.1 Dostal, Jaroslav. Rare Metal Deposits Associated with Alkaline/Peralkaline Igneous Rocks. ResearchGate. April 2016. doi:10.5382/Rev.18.02.
- ^ Campbell, Linda S; Henderson, Paul. Rare Earth Chemistry of Perovskite Group Minerals from the Gardiner Complex, East Greenland. Mineralogical Magazine. April 1997, 61 (405): 1970212. doi:10.1180/minmag.1997.061.405.04.
- ^ Yaxley, Gregory M.; Sujoy Ghosh, Sujoy. Deep Carbon. 6 - CO2-Rich Melts in Earth: Cambridge University Press. : 129 - 162 [2022-06-20]. (原始内容存档于2022-06-27).
They are also of particular economic importance as hosts or sources of many critical metals, including the rare earth elements (REEs) Nb, Ta, P, and others.
- ^ Professor of Chemistry at University College London, Andrea Sella, YouTube上的Andrea Sella: "Insight: Rare-earth metals", Interview on TRT World / Oct 2016, minutes 4:40 - ff.
- ^ T Gray. Lanthanum and Cerium. The Elements. Black Dog & Leventhal. 2007: 118–122.
- ^ Haxel G.; Hedrick J.; Orris J. Rare Earth Elements—Critical Resources for High Technology (PDF). Edited by Peter H. Stauffer and James W. Hendley II; Graphic design by Gordon B. Haxel, Sara Boore, and Susan Mayfield. United States Geological Survey. 2002 [2012-03-13]. USGS Fact Sheet: 087‐02. (原始内容 (PDF)存档于2010-12-14).
However, in contrast to ordinary base and precious metals, REE have very little tendency to become concentrated in exploitable ore deposits. Consequently, most of the world's supply of REE comes from only a handful of sources.
- ^ Suzanne Goldenberg. Rare earth metals mine is key to US control over hi-tech future: Approval secured to restart operations, which could be crucial in challenging China's stranglehold on the market. The Guardian (London). 26 December 2010 [2022-06-20]. (原始内容存档于2022-06-14).
- ^ Tse, Pui-Kwan. USGS Report Series 2011–1042: China's Rare-Earth Industry. pubs.usgs.gov. [2018-04-04]. (原始内容存档于2022-01-20).
- ^ Distribution of rare earths production worldwide as of 2021, by country. statista. 2022-03-04 [2022-06-12]. (原始内容存档于2022-06-08).
- ^ Rare Earths: The Hidden Cost to Their Magic" (Part 2), Distillations Podcast and transcript, Episode 242. Science History Institute. June 25, 2019 [2019-08-28]. (原始内容存档于2019-08-03).
- ^ Lawrence J. Drewa, Meng Qingrunb and Sun Weijun. The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China. Lithos. 1990, 26 (1–2): 43–65. doi:10.1016/0024-4937(90)90040-8.
- ^ Xue-Ming Yang, Michael J. Le Bas. Chemical compositions of carbonate minerals from Bayan Obo, Inner Mongolia, China: implications for petrogenesis. Lithos. 2004, 72 (1–2): 97–116. doi:10.1016/j.lithos.2003.09.002.
- ^ Chengyu Wu. Bayan Obo Controversy: Carbonatites versus Iron Oxide-Cu-Au-(REE-U). Resource Geology. 2007, 58 (4): 348–354. doi:10.1111/j.1751-3928.2008.00069.x. (原始内容存档于2012-12-17).
- ^ Rare element substitution a tricky proposition. CHEMISTRYWORLD. 2014-01-06 [2022-01-07]. (原始内容存档于2022-03-23).
- ^ Rizk, Shirley. What colour is the cloud?. European Investment Bank. 2019-06-21 [2020-09-17]. (原始内容存档于2021-04-14) (英语).
- ^ Standaert, Michael. China Wrestles with the Toxic Aftermath of Rare Earth Mining. Yale Environment 360. Yale School of the Environment. 2019-07-02 [2021-06-16]. (原始内容存档于2022-07-09).
- ^ Volokh, A. A.; Gorbunov, A. V.; Gundorina, S. F.; Revich, B. A.; Frontasyeva, M. V.; Chen Sen Pal. Phosphorus fertilizer production as a source of rare-earth elements pollution of the environment. Science of the Total Environment. 1990-06-01, 95: 141–148. Bibcode:1990ScTEn..95..141V. ISSN 0048-9697. PMID 2169646. doi:10.1016/0048-9697(90)90059-4 (英语).
- ^ Bourzac, Katherine. "Can the US Rare-Earth Industry Rebound?" (页面存档备份,存于互联网档案馆) Technology Review. 2010-10-29.
外部链接
[编辑]外部媒体链接 | |
---|---|
音频 | |
"Rare Earths: The Hidden Cost to Their Magic", Distillations Podcast and transcript, Episode 242, June 25, 2019, Science History Institute | |
视频 | |
“10 ways rare earth elements make life better”, animation, Science History Institute | |
Rare Earth Elements: The Intersection of Science and Society, presentation and discussion led by Ira Flatow, Science History Institute, 2019-9-24 |