在数学中,泰勒级数 (英語:Taylor series,Taylor expansion )用无限项连加式——级数 来表示一个函数,这些相加的项由函数在某一点的导数 求得。泰勒级数是以于1715年发表了泰勒公式 的英國 数学家 布魯克·泰勒 (Sir Brook Taylor )来命名的。通过函数在自变量零点的导数求得的泰勒级数又叫做麦克劳林级数 (英語:Maclaurin series ) ,以苏格兰数学家科林·麦克劳林 (Colin Maclaurin )的名字命名。
拉格朗日 在1797年之前,最先提出帶有餘項的現在形式的泰勒定理。实际应用中,泰勒级数需要截断,只取有限项,可以用泰勒定理 估算这种近似的误差。一个函数的有限项的泰勒级数叫做泰勒多项式 。一个函数的泰勒级数是其泰勒多项式的极限 (如果存在极限)。即使泰勒级数在每点都收敛,函数与其泰勒级数也可能不相等。在开区间(或复平面 上的开区间)上,与自身泰勒级数相等的函数称为解析函数 。
在数学上,对于一个在实数 或复数
a
{\displaystyle a}
邻域 上,以实数作为变量或以复数作为变量的函数 ,并且是无穷可微的 函数
f
(
x
)
{\displaystyle f(x)}
,它的泰勒级数 是以下这种形式的幂级数 :
∑
n
=
0
∞
f
(
n
)
(
a
)
n
!
(
x
−
a
)
n
{\displaystyle \sum _{n=0}^{\infty }{\frac {f^{(n)}(a)}{n!}}(x-a)^{n}}
这里,
n
!
{\displaystyle n!}
表示
n
{\displaystyle n}
的阶乘 ,而
f
(
n
)
(
a
)
{\displaystyle f^{(n)}(a)\,\!}
表示函数
f
{\displaystyle f}
在点
a
{\displaystyle a}
处的
n
{\displaystyle n}
阶导数 。如果
a
=
0
{\displaystyle a=0}
,也可以把这个级数称为麦克劳林级数 。
柯西 在1823年指出函數
exp
(
−
1
x
2
)
{\displaystyle \exp \left(-{\frac {1}{x^{2}}}\right)}
在
x
=
0
{\displaystyle x=0}
无法被解析。
如果泰勒级数对于区间
(
a
−
r
,
a
+
r
)
{\displaystyle (a-r,a+r)}
中的所有
x
{\displaystyle x}
都收敛并且级数的和等于
f
(
x
)
{\displaystyle f(x)}
,那么我们就称函数
f
(
x
)
{\displaystyle f(x)}
为解析形的函数 (analytic)。一个函数当且仅当 (简单地说,“只有在且只要在”)能够被表示为幂级数 的形式时,才是解析形的函数。通常会用泰勒定理 来估计级数的餘项 ,这样就能够确定级数是否收敛于
f
(
x
)
{\displaystyle f(x)}
。上面给出的幂级数展开式中的系数正好是泰勒级数中的系数。
以下三个事实可以说明为什么泰勒级数是十分重要的:
可以逐项对幂级数 的计算微分和积分,因此求和函数 相对比较容易。
数学家因此能够在复数平面上研究函数 ,因为一个解析函数 ,也可以被定义为在复平面 中一个开放的区间内的解析函数 (在区间内每一个点上都能被微分的函数)。
可用泰勒级数估计,在某一点上函数会计算出什么值。
对于一些无穷的 可以被微分 函数
f
(
x
)
{\displaystyle f(x)}
,虽然它们的展开式会收敛,但是并不等于
f
(
x
)
{\displaystyle f(x)}
。例如,分段函数
f
(
x
)
=
exp
(
−
1
x
2
)
{\displaystyle f(x)=\exp \left(-{\frac {1}{x^{2}}}\right)}
,如果
x
≠
0
{\displaystyle x\neq 0}
并且
f
(
0
)
=
0
{\displaystyle f(0)=0}
,则
x
=
0
{\displaystyle x=0}
时所有的导数都为零,所以这个
f
(
x
)
{\displaystyle f(x)}
的泰勒级数为零,且其收敛半径 为无穷大,不过函数
f
(
x
)
{\displaystyle f(x)}
仅在
x
=
0
{\displaystyle x=0}
处为零。但是,在以复数作为变量的函数 中这个问题并不存在,因为当
z
{\displaystyle z}
沿虚轴趋于零,
exp
(
−
1
z
2
)
{\displaystyle \exp \left(-{\frac {1}{z^{2}}}\right)}
并不趋于零。
如果一个函数在某处引发一个奇点,它就无法被展开为泰勒级数,不过如果变量
x
{\displaystyle x}
是负指数幂的话,我们仍然可以将其展开为一个级数。例如,虽然在
x
=
0
{\displaystyle x=0}
的时候,
f
(
x
)
=
exp
(
−
1
x
2
)
{\displaystyle f(x)=\exp \left(-{\frac {1}{x^{2}}}\right)}
会引发奇点,但仍然能够把这个函数展开为一个洛朗级数 。
最近,专家们发现了一个用泰勒级数来求解微分方程 的方法——Parker-Sochacki method [ 1] 。用皮卡反覆運算 便可以推导出这个方法。
在复平面 上餘弦函數的實數部分。
在复平面 上餘弦函數的第八度逼近
兩個以上的曲線放在一起
下面我们给出了几个重要的麦克劳林级数。当变量
x
{\displaystyle x}
是复数时,这些等式依然成立。
由无穷递缩等比数列求和式:
1
1
−
x
=
∑
n
=
0
∞
x
n
=
1
+
x
+
x
2
+
⋯
+
x
n
+
⋯
∀
x
:
|
x
|
<
1
{\displaystyle {\frac {1}{1-x}}=\sum _{n=0}^{\infty }x^{n}=1+x+x^{2}+\cdots +x^{n}+\cdots \quad \forall x:\left|x\right|<1}
(
1
+
x
)
α
=
∑
n
=
0
∞
(
α
n
)
x
n
=
1
+
α
x
+
α
(
α
−
1
)
2
!
x
2
+
⋯
+
α
(
α
−
1
)
⋯
(
α
−
n
+
1
)
n
!
x
n
+
⋯
{\displaystyle (1+x)^{\alpha }=\sum _{n=0}^{\infty }{\binom {\alpha }{n}}x^{n}=1+\alpha x+{\frac {\alpha (\alpha -1)}{2!}}x^{2}+\cdots +{\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}x^{n}+\cdots }
∀
x
:
|
x
|
<
1
,
∀
α
∈
C
{\displaystyle \forall x:\left|x\right|<1,\forall \alpha \in \mathbb {C} }
二项式系数
(
α
n
)
=
∏
k
=
1
n
α
−
k
+
1
k
=
α
(
α
−
1
)
⋯
(
α
−
n
+
1
)
n
!
{\displaystyle {\binom {\alpha }{n}}=\prod _{k=1}^{n}{\frac {\alpha -k+1}{k}}={\frac {\alpha (\alpha -1)\cdots (\alpha -n+1)}{n!}}}
。
以
e
{\displaystyle e}
为底数的指数函数 的麦克劳林級數是
e
x
=
∑
n
=
0
∞
x
n
n
!
=
1
+
x
+
x
2
2
!
+
x
3
3
!
+
⋯
+
x
n
n
!
+
⋯
∀
x
{\displaystyle e^{x}=\sum _{n=0}^{\infty }{\frac {x^{n}}{n!}}=1+x+{\frac {x^{2}}{2!}}+{\frac {x^{3}}{3!}}+\cdots +{\frac {x^{n}}{n!}}+\cdots \quad \forall x}
(对所有X都成立)
以
e
{\displaystyle e}
为底数的自然对数 的麦克劳林級數是
ln
(
1
−
x
)
=
−
∑
n
=
1
∞
x
n
n
=
−
x
−
x
2
2
−
x
3
3
−
⋯
−
x
n
n
−
⋯
∀
x
∈
[
−
1
,
1
)
{\displaystyle \ln(1-x)=-\sum _{n=1}^{\infty }{\frac {x^{n}}{n}}=-x-{\frac {x^{2}}{2}}-{\frac {x^{3}}{3}}-\cdots -{\frac {x^{n}}{n}}-\cdots \quad \forall x\in [-1,1)}
(对于在区间[-1,1)内所有的X都成立)
ln
(
1
+
x
)
=
∑
n
=
1
∞
(
−
1
)
n
+
1
n
x
n
=
x
−
x
2
2
+
x
3
3
−
⋯
+
(
−
1
)
n
+
1
n
x
n
+
⋯
∀
x
∈
(
−
1
,
1
]
{\displaystyle \ln(1+x)=\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}x^{n}=x-{\frac {x^{2}}{2}}+{\frac {x^{3}}{3}}-\cdots +{\frac {(-1)^{n+1}}{n}}x^{n}+\cdots \quad \forall x\in (-1,1]}
(对于在区间(-1,1]内所有的X都成立)
常用的三角函数 可以被展开为以下的麦克劳林級數:
sin
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
+
1
)
!
x
2
n
+
1
=
x
−
x
3
3
!
+
x
5
5
!
−
⋯
∀
x
cos
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
x
2
n
=
1
−
x
2
2
!
+
x
4
4
!
−
⋯
∀
x
tan
x
=
∑
n
=
1
∞
B
2
n
(
−
4
)
n
(
1
−
4
n
)
(
2
n
−
1
)
!
x
2
n
−
1
=
x
+
x
3
3
+
2
x
5
15
+
⋯
∀
x
:
|
x
|
<
π
2
sec
x
=
∑
n
=
0
∞
(
−
1
)
n
E
2
n
(
2
n
)
!
x
2
n
=
1
+
x
2
2
+
5
x
4
24
+
⋯
∀
x
:
|
x
|
<
π
2
arcsin
x
=
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
=
x
+
x
3
6
+
3
x
5
40
+
⋯
∀
x
:
|
x
|
≤
1
arccos
x
=
π
2
−
arcsin
x
=
π
2
−
∑
n
=
0
∞
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
=
π
2
−
x
−
x
3
6
−
3
x
5
40
+
⋯
∀
x
:
|
x
|
≤
1
arctan
x
=
∑
n
=
0
∞
(
−
1
)
n
2
n
+
1
x
2
n
+
1
=
x
−
x
3
3
+
x
5
5
−
⋯
∀
x
:
|
x
|
≤
1
,
x
≠
±
i
{\displaystyle {\begin{aligned}\sin x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n+1)!}}x^{2n+1}&&=x-{\frac {x^{3}}{3!}}+{\frac {x^{5}}{5!}}-\cdots &&\forall x\\[6pt]\cos x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{(2n)!}}x^{2n}&&=1-{\frac {x^{2}}{2!}}+{\frac {x^{4}}{4!}}-\cdots &&\forall x\\[6pt]\tan x&=\sum _{n=1}^{\infty }{\frac {B_{2n}(-4)^{n}\left(1-4^{n}\right)}{(2n-1)!}}x^{2n-1}&&=x+{\frac {x^{3}}{3}}+{\frac {2x^{5}}{15}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt]\sec x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}E_{2n}}{(2n)!}}x^{2n}&&=1+{\frac {x^{2}}{2}}+{\frac {5x^{4}}{24}}+\cdots &&\forall x:|x|<{\frac {\pi }{2}}\\[6pt]\arcsin x&=\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&=x+{\frac {x^{3}}{6}}+{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt]\arccos x&={\frac {\pi }{2}}-\arcsin x\\&={\frac {\pi }{2}}-\sum _{n=0}^{\infty }{\frac {(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}&&={\frac {\pi }{2}}-x-{\frac {x^{3}}{6}}-{\frac {3x^{5}}{40}}+\cdots &&\forall x:|x|\leq 1\\[6pt]\arctan x&=\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}x^{2n+1}&&=x-{\frac {x^{3}}{3}}+{\frac {x^{5}}{5}}-\cdots &&\forall x:|x|\leq 1,\ x\neq \pm i\end{aligned}}}
在
tan
(
x
)
{\displaystyle \tan(x)}
展开式中的Bk 是伯努利数 。在
sec
(
x
)
{\displaystyle \sec(x)}
展开式中的E k 是欧拉数 。
sinh
x
=
∑
n
=
0
∞
1
(
2
n
+
1
)
!
x
2
n
+
1
∀
x
{\displaystyle \sinh x=\sum _{n=0}^{\infty }{\frac {1}{(2n+1)!}}x^{2n+1}\quad \forall x}
cosh
x
=
∑
n
=
0
∞
1
(
2
n
)
!
x
2
n
∀
x
{\displaystyle \cosh x=\sum _{n=0}^{\infty }{\frac {1}{(2n)!}}x^{2n}\quad \forall x}
tanh
x
=
∑
n
=
1
∞
B
2
n
4
n
(
4
n
−
1
)
(
2
n
)
!
x
2
n
−
1
∀
x
:
|
x
|
<
π
2
{\displaystyle \tanh x=\sum _{n=1}^{\infty }{\frac {B_{2n}4^{n}(4^{n}-1)}{(2n)!}}x^{2n-1}\quad \forall x:\left|x\right|<{\frac {\pi }{2}}}
sinh
−
1
x
=
∑
n
=
0
∞
(
−
1
)
n
(
2
n
)
!
4
n
(
n
!
)
2
(
2
n
+
1
)
x
2
n
+
1
∀
x
:
|
x
|
<
1
{\displaystyle \sinh ^{-1}x=\sum _{n=0}^{\infty }{\frac {(-1)^{n}(2n)!}{4^{n}(n!)^{2}(2n+1)}}x^{2n+1}\quad \forall x:\left|x\right|<1}
tanh
−
1
x
=
∑
n
=
0
∞
1
2
n
+
1
x
2
n
+
1
∀
x
:
|
x
|
<
1
{\displaystyle \tanh ^{-1}x=\sum _{n=0}^{\infty }{\frac {1}{2n+1}}x^{2n+1}\quad \forall x:\left|x\right|<1}
tanh
(
x
)
{\displaystyle \tanh(x)}
展开式中的B k 是伯努利数 。
W
0
(
x
)
=
∑
n
=
1
∞
(
−
n
)
n
−
1
n
!
x
n
∀
x
:
|
x
|
<
1
e
{\displaystyle W_{0}(x)=\sum _{n=1}^{\infty }{\frac {(-n)^{n-1}}{n!}}x^{n}\quad \forall x:\left|x\right|<{\frac {1}{e}}}
泰勒级数可以推广到有多个变量 的函数 :
∑
n
1
=
0
∞
⋯
∑
n
d
=
0
∞
∂
n
1
+
⋯
+
n
d
∂
x
1
n
1
⋯
∂
x
d
n
d
f
(
a
1
,
⋯
,
a
d
)
n
1
!
⋯
n
d
!
(
x
1
−
a
1
)
n
1
⋯
(
x
d
−
a
d
)
n
d
{\displaystyle \sum _{n_{1}=0}^{\infty }\cdots \sum _{n_{d}=0}^{\infty }{\frac {\partial ^{n_{1}+\cdots +n_{d}}}{\partial x_{1}^{n_{1}}\cdots \partial x_{d}^{n_{d}}}}{\frac {f(a_{1},\cdots ,a_{d})}{n_{1}!\cdots n_{d}!}}(x_{1}-a_{1})^{n_{1}}\cdots (x_{d}-a_{d})^{n_{d}}}
希腊哲学家芝诺 在考虑了利用无穷级数求和来得到有限结果的问题,得出不可能的结论 - 芝诺悖论 。后来,亚里士多德 对芝诺悖论在哲学上进行了反驳,但德谟克利特 以及后来的阿基米德 进行研究,此部分数学内容才得到解决。 正是用了阿基米德的穷竭法 才使得一个无穷级数被逐步的细分,得到了有限的结果。[ 2] 几个世纪之后,中国数学家刘徽 也独立提出了类似的方法。[ 3]
进入14世纪,马德哈瓦 最早使用了泰勒级数以及相关的方法[ 4] 。尽管他的数学著作没有流传下来,但后来印度数学家的著作表明他发现了一些特殊的泰勒级数,这些级数包括正弦 、余弦 、正切 、和反正切 三角函数等等。之后,喀拉拉学派 在他的基础上进行了一系列的延伸与合理逼近,这些工作一直持续到16世纪。
到了17世纪,詹姆斯·格雷果里 同样继续着这方面的研究并且发表了若干麦克劳林级数 。但是直到1715年,布鲁克·泰勒 [ 5] 提出了一个通用的方法来构建适用于所有函数的此类列级数。这就是后来被人们所熟知的泰勒级数。
麦克劳林级数是泰勒级数的特例,是爱丁堡大学 的科林·麦克劳林 教授在18世纪发表的,并以其名字命名。
《自然哲學的數學原理 》的第三編“宇宙體系”的引理五的图例。這裡在橫坐標上有6個點H,I,K,L,M,N,對應著6個值A,B,C,D,E,F,生成一個多項式函數對這6個點上有對應的6個值,計算任意點S對應的值R。牛頓給出了間距為單位值和任意值的兩種情況。
牛頓插值公式 也叫做牛頓級數 ,由“牛頓前向差分方程 ”的項組成,得名於伊薩克·牛頓 爵士,最早发表为他在1687年出版的《自然哲學的數學原理 》中第三編“宇宙體系”的引理五[ 6] ,此前詹姆斯·格雷果里 於1670年和牛頓於1676年已經分別獨立得出這個成果。一般稱其為連續“泰勒展開”的離散對應。
對於x值間隔為非一致步長,牛頓計算均差 ,對x 值間隔為單位步長1或一致但非單位量的情況,計算差分 ,前向差分的定義為:
Δ
h
1
[
f
]
(
x
)
=
f
(
x
+
h
)
−
f
(
x
)
Δ
h
n
[
f
]
(
x
)
=
Δ
h
n
−
1
[
f
]
(
x
+
h
)
−
Δ
h
n
−
1
[
f
]
(
x
)
{\displaystyle {\begin{aligned}\Delta _{h}^{1}[f](x)&=f(x+h)-f(x)\\\Delta _{h}^{n}[f](x)&=\Delta _{h}^{n-1}[f](x+h)-\Delta _{h}^{n-1}[f](x)\\\end{aligned}}}
牛頓前向差分插值公式為:
f
(
x
)
=
f
(
a
)
+
x
−
a
h
(
Δ
h
1
[
f
]
(
a
)
+
x
−
a
−
h
2
h
(
Δ
h
2
[
f
]
(
a
)
+
⋯
)
)
=
f
(
a
)
+
∑
k
=
1
n
Δ
h
k
[
f
]
(
a
)
k
!
h
k
∏
i
=
0
k
−
1
(
(
x
−
a
)
−
i
h
)
{\displaystyle {\begin{aligned}f(x)&=f(a)+{\frac {x-a}{h}}\left(\Delta _{h}^{1}[f](a)+{\frac {x-a-h}{2h}}\left(\Delta _{h}^{2}[f](a)+\cdots \right)\right)\\&=f(a)+\sum _{k=1}^{n}{\frac {\Delta _{h}^{k}[f](a)}{k!h^{k}}}\prod _{i=0}^{k-1}((x-a)-ih)\\\end{aligned}}}
這成立於任何多項式 函數和大多數但非全部解析函數 。
牛頓 在1665年得出並在1671年寫的《流數法》中發表了
ln
(
1
+
x
)
{\displaystyle \ln(1+x)}
的無窮級數 ,在1666年得出了
arcsin
(
x
)
{\displaystyle \arcsin(x)}
和
arctan
(
x
)
{\displaystyle \arctan(x)}
的無窮級數,在1669年的《分析學》中發表了
sin
(
x
)
{\displaystyle \sin(x)}
、
cos
(
x
)
{\displaystyle \cos(x)}
、
arcsin
(
x
)
{\displaystyle \arcsin(x)}
和
e
x
{\displaystyle e^{x}}
的無窮級數;萊布尼茨 在1673年大概也得出了
sin
(
x
)
{\displaystyle \sin(x)}
、
cos
(
x
)
{\displaystyle \cos(x)}
和
arctan
(
x
)
{\displaystyle \arctan(x)}
的無窮級數。布魯克·泰勒 在1715年著作《Methodus Incrementorum Directa et Inversa (页面存档备份 ,存于互联网档案馆 )》中研討了有限差分 方法,其中論述了他在1712年得出的泰勒定理 ,這個成果此前詹姆斯·格雷果里 在1670年和萊布尼茨 在1673年已經得出,而約翰·伯努利 在1694年已經在《教師學報》發表。
他對牛頓的均差分的步長取趨於
0
{\displaystyle 0}
的極限 ,得出:
f
(
x
)
=
f
(
a
)
+
lim
h
→
0
∑
k
=
1
∞
Δ
h
k
[
f
]
(
a
)
k
!
h
k
∏
i
=
0
k
−
1
(
(
x
−
a
)
−
i
h
)
=
f
(
a
)
+
∑
k
=
1
∞
d
k
d
x
k
f
(
a
)
(
x
−
a
)
k
k
!
{\displaystyle {\begin{aligned}f(x)&=f(a)+\lim _{h\to 0}\sum _{k=1}^{\infty }{\frac {\Delta _{h}^{k}[f](a)}{k!h^{k}}}\prod _{i=0}^{k-1}((x-a)-ih)\\&=f(a)+\sum _{k=1}^{\infty }{\frac {d^{k}}{dx^{k}}}f(a){\frac {(x-a)^{k}}{k!}}\\\end{aligned}}}
^ James S. Sochacki. The Modified Picard Method for Solving Arbitrary Ordinary and Initial Value Partial Differential Equations . James Madison University. [2008-05-02 ] . (原始内容 存档于2008-05-01) (英语) .
^ Kline, M. (1990) Mathematical Thought from Ancient to Modern Times . Oxford University Press. pp. 35-37
^ 吴文俊 《中国数学史大系》第三卷 367页
^ Neither Newton nor Leibniz - The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala . MAT 314. Canisius College. [2006-07-09 ] . (原始内容 存档于2006-08-06).
^ Taylor, Brook, Methodus Incrementorum Directa et Inversa [Direct and Reverse Methods of Incrementation] (London, 1715), pages 21-23 (Proposition VII, Theorem 3, Corollary 2). Translated into English in D. J. Struik, A Source Book in Mathematics 1200-1800 (Cambridge, Massachusetts: Harvard University Press, 1969), pages 329-332.
^ Newton, Isaac, (1687). Principia , Book III, Lemma V, Case 1