极限点(英語:Limit point)在数学中是指可以被集合S中的点[註 1]随意逼近的點。[註 2]
这个概念有益的推广了极限的概念,并且是諸如闭集和拓扑閉包等概念的基础。实际上,一个集合是闭合的当且仅当他包含所有它的极限点,而拓扑闭包运算可以被认为是通过增加它的极限点来扩充一个集合。[註 3]
以上的定義來自於「總是可以找到一組 內的點去逼近 」的粗略想法,但一般的拓撲空間的不一定有像距離這樣的工具來比較「開集的大小」,若想以極限點嚴謹地描述「可沿著 去逼近點」的話,還需要對做額外的假設。
度量空间 自然的帶有由度量生成的拓撲 ;更仔細地說,是由以開球為元素的拓撲基所生成的拓撲,也就是裡的開集都是某群開球的聯集。這樣對開球定義極限點的話,就會等價於對定義(因為屬於某個開球等價於屬於某開集),換句話說,對度量空間可以作如下定義:
定義 —
是度量空间 ,且 ;若 ,且對所有 ,存在 使得 ,也就是
這樣稱 是 的聚集点(cluster point)或会聚点(accumulation point)
直觀上可理解為「可以用 裡的點(以度量 )無限制地逼近」。應用上, 為定義域的聚集點也是函數極限能在 上有定義的前提條件。
在度量空间中,ω‐会聚点与普通的极限点定义等价
- 关于极限点的性质:是的极限点,当且仅当它属于 \ {}的闭包。
- 证明:根据闭包定义,某点属于某集合的闭包,当且仅当该点的所有邻域都和该集合相交。则有:x是的极限点,当且仅当所有的邻域都包含一个非的点属于S,当且仅当所有的邻域含有一个点属于\ {x},当且仅当属于的闭包。
- 的闭包具有下列性质:的闭包等于和其導集的并集。
- 证明:(从左到右)设属于的闭包。若属于S,命题成立。若,则所有的邻域都含有一个非的点属于;也就是说,x是的极限点,。(从右到左)设属于S,则明显地所有的邻域和相交,所以属于的闭包。若属于L(S),则所有的邻域都含有一个非的点属于S,所以也属于的闭包。得证。
- 上述结论的推论给出了闭集的性质:集合是闭集,当且仅当它含有所有它的极限点。
- 证明1:S是闭集,当且仅当等于其闭包,当且仅当=∪ L(S),当且仅当L(S)包含于S。
- 证明2:设是闭集,是的极限点。则必须属于S,否则的补集为的开邻域,和不相交。相反,设包含所有它的极限点,需要证明的补集是开集。设属于的补集。根据假设,x不是极限点,则存在的开邻域U和不相交,则U在的补集中,则的补集是开集。
- 孤点不是任何集合的极限点。
- 证明:若是孤点,则{x}是只含有的的邻域。
- 空间是离散空间,当且仅当的子集都没有极限点。
- 证明:若是离散空间,则所有点都是孤点,不能是任何集合的极限点。相反,若不是离散空间,则单元素集合{x}不是开集。那么,所有{x}的邻域都含有点y ≠ x,则是的极限点。
- 若空间有密着拓扑,且是的多于一个元素的子集,则的所有元素都是的极限点。若是单元素集合,则所有\的点仍然是的极限点。
- 说明:只要\ {x}非空,它的闭包就是X;只有当是空集或是的唯一元素时,它的闭包才是空集。
- 為T1空間,則 為 的極限點等價於 的每個鄰域皆包含無限多個 的點。[註 4]